Cable equation for general geometry
نویسندگان
چکیده
منابع مشابه
Cable equation for general geometry.
The cable equation describes the voltage in a straight cylindrical cable, and this model has been employed to model electrical potential in dendrites and axons. However, sometimes this equation might give incorrect predictions for some realistic geometries, in particular when the radius of the cable changes significantly. Cables with a nonconstant radius are important for some phenomena, for ex...
متن کاملFractional cable equation for general geometry: A model of axons with swellings and anomalous diffusion.
Different experimental studies have reported anomalous diffusion in brain tissues and notably this anomalous diffusion is expressed through fractional derivatives. Axons are important to understand neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Indeed, abnormal accumulation of proteins and organelles in axons is a hallmark of these diseases....
متن کاملSolving the Helmholtz Equation for General Geometry Using Simple Grids
The method of difference potentials was originally proposed by Ryaben’kii, and is a generalized discrete version of the method of Calderon’s operators. It handles non-conforming curvilinear boundaries, variable coefficients, and non-standard boundary conditions while keeping the complexity of the solver at the level of a finite-difference scheme on a regular structured grid. Compact finite diff...
متن کاملA simple algorithm for solving the cable equation in dendritic trees of arbitrary geometry.
We present an efficient algorithm for solving the one-dimensional cable equation in the Laplace (frequency) domain for an arbitrary linear membrane. This method, a reformulation and extension of the geometrical calculus developed by Butz and Cowan (1974), solves for the transfer impedance between any two points in a branched cable structure of arbitrary geometry (but without loops) by the repet...
متن کاملNonlinear Cable equation, Fractional differential equation, Radial point interpolation method, Meshless local Petrov – Galerkin, Stability analysis
The cable equation is one the most fundamental mathematical models in the neuroscience, which describes the electro-diffusion of ions in denderits. New findings indicate that the standard cable equation is inadequate for describing the process of electro-diffusion of ions. So, recently, the cable model has been modified based on the theory of fractional calculus. In this paper, the two dimensio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2017
ISSN: 2470-0045,2470-0053
DOI: 10.1103/physreve.95.022403